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Abstract

In this paper we derive four sets of sinc-like functions, defined on a finite
interval and obeying different boundary conditions. The functions in each
set are orthogonal and their nodes are uniformly distributed on the interval.
We have applied each set to solve a large class of eigenvalue equations, with
different boundary conditions, both on finite intervals and on the real line,
showing that precise numerical results can be obtained efficiently and rapidly.
A comparison with results available in the literature is also performed.

PACS numbers: 31.15.Md, 03.65.Ge

1. Introduction

In this paper, we introduce four sets of orthogonal functions, defined on a finite interval, and
obeying different boundary conditions (periodic, antiperiodic, Dirichelt and von Neumann).
The functions obtained here can be used to solve numerically a wide class of problems,
including function interpolation, and eigenvalue equations, such as the Schrödinger equation,
by means of a collocation approach.

Collocation methods provide in general an efficient tool to deal with the problems
mentioned above, and the reader may find a vast literature on this subject both in physics
and mathematics [1–10]. The discrete variable representation method (DVR) of [11] and the
quadrature discretization method (QDM) of [12] also fall into this category.

In particular, the approach followed here is closely related to a previous work by some of us
[10] which contains the derivation of a set of functions, called there little sinc functions (LSF),
which is included in the sets discussed in this paper. As shown in [10], the collocation approach
to the Schrödinger equation with LSF is extremely straightforward since the representation
of the Hamiltonian operator has a simple analytic expression. This feature makes it possible
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to implement a variational collocation approach which uses the invariance of the trace of the
Hamiltonian to set an optimal collocation scale [9, 10], thus increasing the numerical precision
of the results. In a recent paper, one of us has also extended this method to the relativistic
Salpeter equation in [13], where the kinetic operator is nonlocal. The same functions have
also been applied to the numerical solution of the Helmholtz equation on arbitrary domains in
two dimensions in [14].

The main purpose of this paper is therefore to derive sets of functions obeying different
boundary conditions, which can then be applied to the solution of the Schrödinger equation
in much the same fashion as the original LSF. The functions discussed here are built using
the four orthonormal sets of functions considered in [15], which obey periodic, Dirichlet,
antiperiodic and von Neumann boundary conditions, respectively. As mentioned before, the
set obeying Dirichlet boundary conditions leads to the LSF discussed in [10].

This paper is organized as follows: in section 2 we describe the general approach used
to build sinc-like orthonormal systems; in section 3 we apply this approach to derive explicit
expressions for the sinc-like functions corresponding to each set, explicitly showing that these
functions generate uniform meshes; in section 4 we consider several examples of applications
of our functions to problems on finite intervals, comparing our results with those available in
the literature, and in section 5 we consider the Schrödinger equation on the real line; finally in
section 6 we draw our conclusions.

2. Basic definitions

In this section, we describe the general approach which will be used to build sinc-like
orthonormal systems of functions. Let {ψn(x)} be an orthonormal complete system of
functions in L2([a, b]). Then the functions ψn(x) satisfy the relations, in the sense of
distributions, ∫ b

a

ψn(x)ψm(x) dx = δnm and
∞∑

n=0

ψn(x)ψn(y) = δ(x − y),

where δ is the Dirac delta function [16]. A function f ∈ L2([a, b]) can then be represented
in this basis as

f (x) ∼
∞∑

n=0

cnψn(x),

with convergence in L2([a, b]), where the coefficients cn are given by cn = ∫ b

a
f (x)ψn(x) dx.

We will now consider partial sums of this series, and set the approximate representation
of the Dirac delta function

δN(x, y) =
N∑

n=0

ψn(x)ψn(y). (1)

It is easy to see that this function satisfies the convolution property∫ b

a

δN(x, y)δN(x, z) dx =
N∑

n=0

N∑
m=0

ψn(y)ψm(z)

∫ b

a

ψn(x)ψm(x) dx

=
N∑

n=0

ψn(y)ψn(z) = δN(y, z). (2)

2
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We normalize this function by setting δN(x, y) = δN (x,y)

δN (x,x)
. We note that often δN(x, x) turns

out to be constant, as in some of the orthonormal sets that we consider in the following section.
Let us now select a discrete finite subset of points {xk} of the interval [a, b] = [−L,L],

and define the sampling functions

sk(N,L, x) = δN(xk, x). (3)

If the xk are chosen so that δN(xk, xj ) = 0 if k �= j , then, by (2) the functions sk are orthogonal,∫ L

−L

sk(N,L, x)sj (N,L, x) dx = δkj

δN(xk, xk)
. (4)

We use these functions to interpolate a function f (x) defined on the interval [−L,L] by

SNf (x) =
N∑

k=0

f (xk)sk(N,L, x). (5)

We can similarly interpolate the derivatives s ′
k(N,L, x) by the sums

Dsk(N,L, x) =
N∑

j=0

cj,ksj (N,L, x),

where the coefficients are given by cj,k = s ′
k(N,L, xj ). We thus obtain an interpolation of

the derivative f ′(x) of f by the sum

DSNf (x) =
N∑

k=0

N∑
j=0

f (xk)cj,ksj (N,L, x). (6)

The interpolation (6) can be used to represent a general linear differential operator L by
means of a matrix ML, obtained from the matrix (cj,k) acting on the points f (xk). Thus, the
eigenvalues and eigenfunctions of L may be approximated by the respective eigenvalues and
(interpolation of) eigenvectors of the matrix ML.

3. Four orthonormal sets

In this section, we construct explicitly the functions sk(N,L, x) for four particular complete
orthonormal systems of functions, namely those considered in [15] in the context of variational
calculation. The first consists of the standard Dirichlet kernels of Fourier series, the second
satisfies Dirichlet boundary conditions, the third ‘antiperiodic’ boundary conditions (we
explain this later), while the fourth von Neumann conditions.

3.1. Periodic boundary conditions

We consider the standard orthonormal complete system functions in the interval [−L,L] given
by the trigonometric functions

ψ0(x) = 1√
2L

, ψn(x) = 1√
L

cos
(nπx

L

)
, φn(x) = 1√

L
sin

(nπx

L

)
, (7)

with n = 1, 2, . . .. The approximate representation of the Dirac delta function is then the
normalized Dirichlet kernel [17]

δN(x, y) =
N∑

k=0

[ψk(x)ψk(y) + φk(x)φk(y)] = 1

2L

sin
(

(2N+1)π(x−y)

2L

)
sin

(
π(x−y)

2L

) , (8)
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where the last formula is valid for x �= y. One can see that δN(x, x) = 2N+1
2L

, and thus the
normalized functions are given by

δN(x, y) = 1

2N + 1

sin
(

(2N+1)π(x−y)

2L

)
sin

(
π(x−y)

2L

) , (9)

which of course satisfy limy→x δN(x, y) = 1.
Let us now consider a uniform grid with points xk = 2Lk

2N+1 , with k = −N, . . . , N . Clearly
δN(xk, xj ) = δkj , and thus the functions

sk(N,L, x) = δN(x, xk) = 1

2N + 1

sin
(

(2N+1)π(x−xk)

2L

)
sin

(
π(x−xk)

2L

) (10)

= (−1)k

(2N + 1)

sin
(

(2N+1)πx

2L

)
sin

(
πx
2L

− πk
2N+1

) (11)

satisfy ∫ +L

−L

sk(N,L, x)sj (N,L, x) dx = 2L

2N + 1
δkj . (12)

We shall refer to this system as LSF1.

3.2. Dirichlet boundary conditions

In this case we consider the orthonormal complete system of functions in the interval [−L,L]
given by

ψn(x) = 1√
L

cos

(
(2n + 1)πx

2L

)
, φn(x) = 1√

L
sin

(
(n + 1)πx

L

)
, (13)

for n = 0, 1, 2, . . .. These functions satisfy the Dirichlet boundary conditions ψn(±L) =
φn(±L) = 0. We have

δN(x, y) =
N−1∑
k=0

[ψk(x)ψk(y) + φk(x)φk(y)]

= 1

4L

[
sin

(
(4N+1)π(x−y)

4L

)
sin

(
π(x−y)

4L

) − cos
(

(4N+1)π(x+y)

4L

)
cos

(
π(x+y)

4L

)
]

, (14)

where the last formula is valid for x �= y. We note that the function δN(x, x) is not constant
in x. However, for xk = Lk

N
, one obtains δN(xk, xk) = N

L
, and we normalize (14) to obtain

sk(N,L, x) = (−1)k

2N

cos
(

πk
2N

)
sin

(
Nπx

L

)
sin

(
πx
2L

) − sin
(

πk
2N

) . (15)

This expression is equivalent to that contained in [10], with the only difference in notation,
since N used there is twice N used here. We shall call this set LSF2.

3.3. Antiperiodic boundary conditions

We now consider, on [−L,L],

ψn(x) = 1√
L

cos

(
2n + 1

2L
πx

)
, φn(x) = 1√

L
sin

(
2n + 1

2L
πx

)
, (16)
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with n = 0, 1, 2, . . .. These functions satisfy the boundary conditions ψn(±L) = 0 and
φn(L) = −φn(−L) = (−1)n/

√
L. This time we have

δN(x, y) =
N−1∑
k=0

[ψk(x)ψk(y) + φk(x)φk(y)] = 1

2L

sin
(

Nπ(x−y)

L

)
sin

(
π(x−y)

2L

) , (17)

where, again, the last formula in the right is valid for x �= y and δN(x, x) = N
L

.
Choosing a mesh whose grid points are given by xk = Lk/N we obtain

sk(N,L, x) = 1

2N

sin
(

Nπ(x−Lk/N)

L

)
sin

(
π(x−Lk/N)

2L

) = (−1)k

2N

sin
(

Nπx
L

)
sin

(
πx
2L

− πk
2N

) (18)

We will call this set LSF3.

3.4. von Neumann boundary conditions

We now consider the orthonormal complete system of functions on [−L,L]

ψ0(x) = 1√
2L

, ψn(x) = 1√
L

cos
( n

L
πx

)
, n = 1, 2, . . . , (19)

φn(x) = 1√
L

sin

(
2n + 1

2L
πx

)
, n = 0, 1, 2, . . . . (20)

These functions satisfy the von Neumann boundary conditions ψ ′
n(±L) = φ′

n(±L) = 0.
We have then

δN(x, y) =
N∑

k=0

[ψk(x)ψk(y) + φk(x)φk(y)]

= 1

4L

(
sin

(
(4N+3)π(x−y)

4L

)
sin

(
π(x−y)

4L

) − cos
(

(4N+3)π(x+y)

4L

)
cos

(
π(x+y)

4L

)
)

, (21)

where the last formula is valid for x �= y. We see again that δN(x, x) is not constant, but, if
we take xk = 2Lk

2N+1 , we have δN(xk, xk) = 2N+1
2L

.
We can then normalize (21) to obtain

sk(N,L, x) = (−1)k

2N + 1

cos
(

πk
2N+1

)
sin

(
(2N+1)πx

2L

)
sin

(
πx
2L

) − sin
(

πk
2N+1

) . (22)

We will refer to this set as LSF4.
Table 1 summarizes these results. We note that the sampling method in LSF1 was already

studied by Meyer in [18]. Also, LSF2 was discussed by Baye in his paper [4], calling this
set ‘first sine basis’. It is not hard to see that our equation (14) is equivalent to Baye’s (17),
provided one makes the right change of variables.

4. Applications

In this section, we consider several applications of the sets obtained in the previous sections
to the solution of different problems.

5
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Table 1. Sampling functions and grids corresponding to the four different sets considered in
section 3. Note that sets LSF1 and LSF4 and sets LSF2 and LSF3 share the same grids.

xk sk(N, L, x)

LSF1
2Lk

2N + 1

(−1)k

(2N + 1)

sin
(

(2N+1)πx
2L

)
sin

(
πx
2L

− πk
2N+1

)

LSF2
Lk

N

(−1)k

2N

cos
(

πk
2N

)
sin

(
Nπx

L

)
sin

(
πx
2L

)
− sin

(
πk
2N

)

LSF3
Lk

N

(−1)k

2N

sin
(

Nπx
L

)
sin

(
πx
2L

− πk
2N

)

LSF4
2Lk

2N + 1

(−1)k

2N + 1

cos
(

πk
2N+1

)
sin

(
(2N+1)πx

2L

)
sin

(
πx
2L

)
− sin

(
πk

2N+1

)

Table 2. First three eigenvalues of the Mathieu equation with q = 1.

N E0 E1 E2

5 1.859 106 208 4.371 185 066 9.077 920 259
10 1.859 108 073 4.371 300 983 9.078 368 847
Exact 1.859 108 073 4.371 300 983 9.078 368 847

4.1. Mathieu equation

We consider the Mathieu equation [20]

d2y

dz2
+ (a − 2q cos 2z) y = 0. (23)

For q > 0 this equation admits periodic solutions, corresponding to particular values of a:

y(z) = y(2π + z). (24)

These solutions are normalized to π :∫ π

−π

y2(z) dz = π. (25)

We have assumed q = 1 and we have numerically solved the Mathieu equation using
LSF1, with L = π . We use LSF1 as the solutions of (23) are periodic. In table 2 we display
the first three eigenvalues using N = 5 and N = 10. In the last case, the first ten digits
of the numerical results agree with the exact result. A similar behavior is observed for the
wavefunctions: in figure 1 we have plotted the quantity �(x) ≡ log10

∣∣ψexact
0 (x) − ψ

(N)
0 (x)

∣∣
obtained using LSF1 with N = 5, 10, 15. Here ψexact

n (x) are the exact solutions of the Mathieu
equation (see [20]). Note that since the solutions to equation (23) have definite symmetry, one
can use a collocation approach with a reduced set of functions, which are obtained either by
symmetrizing (even solutions) or antysymmetrizing (odd solutions) the elements of the set.
In this way, the dimension of the matrices is halved and the same accuracy is reached with a
limited computational effort.

6
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3 2 1 0 1 2 3
x

15

10

5

Figure 1. � ≡ log10 |ψexact
0 (x) − ψ

(N)
0 (x)| for the Mathieu equation obtained using LSF1 with

N = 5, 10, 15 (going from top to bottom).

6 4 2 2 4 6
x

12

10

8

6

4

2

V

Figure 2. Periodic potential of Coulomb type of equation (26).

4.2. Truncated Coulomb-type periodic potential

Our next example is taken from [21], where the authors considered the Schrödinger equation
of an electron moving in a periodic potential given by

V (x) = − V0

1 +
√

(a/d)2 + 1

[
1√

(x/d)2 + 1
+

1√
(x − a)2/d2 + 1

]
, (26)

for 0 � x � a. Lee and Kalotas have solved the Schrödinger equation using V0 = 10 eV,

a = 4 Å, d = 0.25 Å. We also use h̄c = 197.3 MeV fm and mec
2 = 0.5 MeV. Figure 2

shows the potential used.
In table 3, we show the numerical results for the first three eigenvalues obtained by solving

the Schrödinger equation for this potential using LSF1 and LSF4, with N = 40 and L = a.

7



J. Phys. A: Math. Theor. 42 (2009) 115302 P Amore et al

Table 3. Numerical solution of the Schrödinger equation for a periodic potential of Coulomb type
using the LSF1 and LSF4 for N = 40.

LSF1 LSF4 [21]

λ1 −4.494 563 738 −4.494 563 738 −4.5021
λ2 −3.204 031 703 −4.008 497 402 −3.2563
λ3 −0.397 799 3058 −3.204 031 703 –

We have used LSF4 as well since the potential takes its minima on integer multiples of a, and
thus the solutions are expected to satisfy von Neumann conditions. The results of [21] are also
reported in the last column for comparison. An important observation is that the eigenvalue λ3

for Set I and the eigenvalue λ2 for LSF2 are not physically relevant: in the case of LSF4ψ2(x)

is periodic with period 4a, whereas in the case of LSF1 the wavefunction ψ3(x) also obeys
Dirichlet boundary conditions.

The remaining eigenvalues, calculated with the two different sets are the same to the
numerical precision displayed, although obtained with different sets. We also calculated (but
we prefer not to show here) the eigenvalues for this problem obtained for different grid sizes:
for N > 30 the sequence of values is a monothonically decreasing sequence, so that we may
conclude that the results reported in the table provide an upper bound to the exact results.

4.3. Unbounded periodic potential

Our next example is taken from [22], where the authors have considered the Hamiltonian

Ĥ = − d2

dx2
+

ρ2 − 1/4

sin2 x
(27)

with ρ > 0. The potential of this Hamiltonian is periodic with period π and singular at integer
multiples of π .

The exact eigenvalues of this Hamiltonian are

En = (ρ + n + 1/2)2 (28)

and its exact eigenfunctions are given by

ψn(x) =
√

(ρ + n + 1/2)	(2ρ + n + 1)

n!

√
|sin x|P −ρ

ρ+n(cos x), (29)

where P μ
ν (x) are Legendre functions.

From the point of view of a numerical calculation this problem is particularly interesting
because the wavefunctions in equation (29) fulfil both Dirichlet and von Neumann boundary
conditions at x = 0 and x = π , as it can explicitly be checked. Moreover, it is easy to
convince oneself, based on qualitative grounds, that the numerical solutions of the eigenvalue
equation obtained using the different sets of this paper perform differently as different values
of ρ are considered. In particular, for ρ → 1

2
+
, the potential is small everywhere, apart

from a small region around the singularities: in such case one expects that LSF2 (Dirichlet
boundary conditions) should perform better than LSF1 or LSF4. In the opposite regime, i.e.
ρ 
 1, the reverse is true, since the solutions of LSF1 and LSF4 have negligible values around
x = 0 or x = π , due to the exponential suppression in the classically forbidden region, and
automatically obey von Neumann boundary conditions.

In table 4 we display the numerical results obtained using the four sets both for ρ = 0.6
and for ρ = 2, with L = π . In this last case the numerical result approaches quite fastly the

8
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10
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Figure 3. Periodic singular potential of [22] for ρ = 0.6 (solid line) and ρ = 2 (dashed line).

Table 4. Numerical approximation to the first eigenvalue of equation (27) for ρ = 0.6 (second
and third columns) and ρ = 2 (fourth and fifth columns) using the four different sets. The row RE
displays the results obtained with Richardson extrapolation of the numerical results going from
N = 10 to N = 40.

LSF1 and LSF4 LSF2 and LSF3 LSF1 and LSF4 LSF2 and LSF3

N ρ = 0.6 ρ = 0.6 ρ = 2 ρ = 2

40 1.227 120 833 1.208 720 898 6.250 001 552 6.249 999 828
80 1.217 472 028 1.209 443 039 6.250 000 099 6.249 999 989
120 1.214 598 264 1.209 657 579 6.250 000 020 6.249 999 998
RE 1.209 813 127 1.210 013 083 6.249 999 078 6.250 000 159
Exact 1.210 000 000 1.210 000 000 6.250 000 000 6.250 000 000

exact result, showed in the last row. We also display the results obtained with Richardson
extrapolation of the numerical results for grids going from N = 10 to N = 40. Note that
the results of columns two and three approach the exact eigenvalue from above and below
respectively; similar behavior is observed for columns four and five. It is well known that
basis sets with Dirichlet and von Neumann boundary conditions produce respectively upper
and lower bounds to the eigenvalues [23].

4.4. Coffey–Evans equation

The Coffey–Evans equation [24–27] is a Schrödinger equation

− d2ψ

dx2
+ (−2β cos 2x + β2 sin2 2x)ψ(x) = λψ(x) (30)

with ψ(−π/2) = ψ(π/2) = 0. Note that the example of [25] is solved on x ∈ (0, π) and
corresponds to β = 10. We have used this example to test the numerical accuracy of our
method.

9
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Table 5. Numerical solution of equation (30) for β = 10 using the LSF2.

LSF2

N = 20 [25]

λ1 0.000 000 000 0.000 000 00
λ2 37.759 628 47 37.759 6285
λ3 37.805 900 23 37.805 9002
λ4 37.852 599 50 37.852 5995
λ5 70.547 509 74 70.547 5097
λ6 92.653 817 69 92.653 8177
λ7 96.205 815 88 96.205 8159
λ8 102.254 3469 102.254 347
λ9 120.267 7566 –
λ10 136.430 4340 –

Table 6. Numerical solution of the metal slab heating problem using LSF4 with a different number
of grid points.

N λ1 λ2 λ3

10 −20.000 000 00 −54.865 825 49 −84.430 478 37
20 −20.000 000 00 −54.868 669 96 −84.473 751 99
30 −20.000 000 00 −54.869 300 11 −84.477 084 62
40 −20.000 000 00 −54.869 471 60 −84.477 859 80
50 −20.000 000 00 −54.869 535 25 −84.478 132 50
60 −20.000 000 00 −54.869 563 99 −84.478 252 59
100 −20.000 000 00 −54.869 595 53 −84.478 381 85
[27] −20 −54.8696 −84.4784

4.5. Metal slab heating problem

Our next example is taken from [27], where the eigenvalue equation

d2ψ

dx2
− q

dψ

dx
− gψ(x) = λψ(x) (31)

describing the sheet temperature profile of a metal slab. Here x ∈ (0, 1) and ψ ′(0) = ψ ′(1) =
0. Following [27] we use the constant parameters q = 10 and g = 20. Note that the
eigenfunction corresponding to the lowest eigenvalue is constant and therefore λ1 = −g. We
have collocated this problem on the uniform grid of the LSF4, which fulfils the boundary
conditions requested in this case. Table 6 contains the results for the first three eigenvalues
obtained with meshes with N ranging from N = 10 to N = 100, which agree with the results
obtained in [27] following a different approach.

4.6. Periodic boundary conditions

References [27, 28] contain an example of eigenvalue equation with periodic boundary
conditions:

1

π2

d2ψ

dx2
− π3x2(1 − x)ψ(x) = −λψ(x) (32)

where ψ(0) = ψ(1) and ψ ′(0) = ψ ′(1). In table 7 we compare the eigenvalues obtained
using our LSF1, for N = 200, with the results of [27]. Our results agree with those of [27] to
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Table 7. Numerical solution of equation (32) using the LSF of set I.

LSF1 [27] LSF1 [27]
N = 200 N = 200

λ1 2.029 430 586 2.0294 λ11 102.597 7205 –
λ2 6.500 503 365 6.5005 λ12 146.582 8816 –
λ3 7.015 057 039 7.0151 λ13 146.593 523 –
λ4 18.584 787 01 – λ14 198.583 1142 –
λ5 18.665 481 57 – λ15 198.590 9759 –
λ6 38.581 643 42 – λ16 258.583 2768 –
λ7 38.621 542 53 – λ17 258.589 3162 258.5893
λ8 66.582 063 63 – λ18 326.583 3935 326.5834
λ9 66.605 364 88 – λ19 326.588 1751 326.5882
λ10 102.582 5421 – λ20 402.583 4797 402.5835

the accuracy reported in that paper. To be fair the numerical results of [27] are computed with
only M = 50 discretization points, compared to our 2N + 1 = 401 discretization points: for
a given number of grid points, the method of Adomaitis and Lin however involve a series of
steps which in our method are not present. As a matter of fact we are working with a uniform
grid, which is specified only by the length of the interval and by the number of points and with
analytical expressions for the matrices of the derivatives.

5. The Schrödinger equation on the real line

The little sinc functions discussed in this paper are defined in a finite interval [−L,L] but
can also be applied to eigenvalue problems on the real line −∞ < x < +∞. To this end L
should be sufficiently large so that a bound state is vanishingly small in the neighborhood of
the end points of that region. Obviously, one has to increase both N and L in order to reach
a satisfactory accuracy. From a practical point of view it is convenient to have a suitable
criterion for choosing the optimum L for a given grid, i.e. with N fixed. Following [10] we
propose to link the values of those parameters by means of the minimum of the trace of the
Hamiltonian matrix H: ∂trH/∂L = 0. In this way, we have to increase only N and L = L

(N)
PMS

is completely determined by the minimum condition.
As a first test of this approach we can consider the simple harmonic oscillator, for

which the exact solutions are available. The implementation of the variational procedure is
straightforward: working with one of the sets obtained in the previous section, we define a
mesh corresponding to a given value of N. On this grid we obtain a representation of the
Hamiltonian operator as a matrix whose elements are given by

Hij = − h̄2

2m
c
(2)
ij + δijV (xi),

where xi are the points on the grid and c(2) is the matrix of the second derivative. It is important
to stress that the expression for Hij is analytical and a function of L. Therefore, the trace of
H is itself analytical and is obtained by summing all the diagonal elements over all the grid
points. We call LPMS the optimal value of L obtained by minimization of the trace. In table 8,
we display the results obtained for the ground state of the simple harmonic oscillator using
the four sets and grids corresponding to N = 10, 20, 30. The present approach provides
extremely precise numerical results with all the sets considered, the first one being slightly
more accurate.

11
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Figure 4. Logarithm of the error over the energy of the ground state of (34) � ≡ log10 |Eset(N)−
E(100)| for the different sets for λ = 1. E(100) is the average of the energy of the ground state
obtained with the four sets using N = 100.

Table 8. Variational calculation of the ground-state energy of the simple harmonic oscillator using
the four different sets for N = 10, 20, 30.

LSF1 LSF2 LSF3 LSF4

L
(10)
PMS 5.743 5.718 5.751 5.643


E0|(10)
PMS −6.369 × 10−14 −4.655 × 10−13 −6.79 × 10−13 −1.082 × 10−13

L
(20)
PMS 8.025 8.004 8.028 7.952


E0|(20)
PMS −1.981 × 10−27 −1.423 × 10−26 −2.148 × 10−26 −3.439 × 10−27

L
(30)
PMS 9.789 9.77 9.79 9.729


E0|(30)
PMS −5.451 × 10−41 −3.894 × 10−40 −5.95 × 10−40 −9.538 × 10−41

The second example is the Schrödinger equation with the supersingular potential

H = p2 + x2 + λ ex4
(34)

studied by Detwiler and Klauder [19]. The name of this potential comes from the fact that there
is no conventional perturbation series in λ. The implementation of our method is unaffected
by this feature and the approach is the same followed for the simple harmonic oscillator. In
figure 4, we have displayed the logarithm of the error over the energy of the ground state of
(34) � ≡ log10 |Eset(N) − E(100)| for the different sets for λ = 1. E(100) is the average
of the energy of the ground state obtained with the four sets using N = 100. Table 9 shows
the ground-state energy of the Hamiltonian operator (34) for a wide range of values of λ that
span the most interesting small-λ regime. One can appreciate the advantage of the collocation
methods that avoid the calculation of complicated matrix elements of the potential energy
function.
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Table 9. Ground-state energy of the supersingular potential of equation (34) for λ = 10q using
the first two sets with N = 100.

q E
(I)
0 E

(II)
0 E

(I)
0 − E

(II)
0

0 2.672 270 347 028 729 4063 2.672 270 347 028 728 8917 5.15 × 10−16

−1 1.420 268 090 317 635 9415 1.420 268 090 317 397 3972 2.39 × 10−13

−2 1.196 097 905 799 530 4661 1.196 097 905 788 114 2875 1.14 × 10−11

−3 1.124 587 113 656 827 7440 1.124 587 113 501 410 8365 1.55 × 10−10

−4 1.088 423 394 773 035 8280 1.088 423 393 774 555 0839 9.99 × 10−10

−5 1.065 879 560 082 512 3053 1.065 879 556 119 722 9543 3.96 × 10−9

−6 1.050 519 103 881 029 9772 1.050 519 092 535 068 4659 1.13 × 10−8

−7 1.039 537 998 985 142 9035 1.039 537 973 201 184 089 2.58 × 10−8

−8 1.031 432 769 914 740 5618 1.031 432 720 436 772 1415 4.95 × 10−8

−9 1.025 306 756 864 356 2956 1.025 306 673 276 254 5855 8.36 × 10−8

−10 1.020 589 649 512 314 2124 1.020 589 521 526 953 8785 1.28 × 10−7

6. Conclusions

In this paper we have obtained four sets of sinc-like functions, defined on finite intervals,
which obey different boundary conditions. We have shown that a collocation approach to
the solution of the Schrödinger equation based on these functions is both straightforward
and precise and we have compared our results with those available in the literature, both
for problems on the real line and for problems defined on finite intervals. In the first case
we show that the collocation scheme can be used within a variational approach where the
optimal scale is determined minimizing the trace of the Hamiltonian matrix, in much the same
spirit of [9, 10]. We also remark that the meshes generated by the functions discussed in this
paper are uniform, a desirable feature in a certain class of problems. Further applications
of the sets discussed here, which will be analyzed elsewhere, include the representation of
nonlocal operators on uniform meshes with different boundary conditions, and the study of
the vibrations of two-dimensional membranes, as a natural extension of the work carried out
in [13, 14]. Note that in this last case, the conformal mapping of the border can be handled
straightforwardly within the method of [14] and yields results which rapidly converge as shown
in [14].
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